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Abstract

llstimation

This paper presents a new range and Doppler centroid  estimation algorithm for a ScanSAR

system. Its accurate range and Doppler centroid estimates lead to refined radar pointing angles, which

enables the ScanSAR imagery meeting its radiometric  requirements. This algorithm attains an accuracy

equal to the Cramer Rae’s lower bound for both the homogeneous and quasi-homogeneous targets. This

algorithm is also efficient in computation and easy for implementation.

1. INTRODUCTION

An accurate radar pointing is often required in SAR processing in order to meet its radiometric

accuracy and signal-to-ambiguity requirements. However, the attitude control unit in most SAR systems

can not provide such an accurate data. An alternative approach to solve this problem is to derive the

pointing angles from the SAR data by estimating the range and Doppler centroids. Available methods

include clut terlock  techniques [1,2,3] and multiple PRP techniques [4] to improve the azimuth pointing

accuracy; and the range centroid tracking technique [5] to improve the elevation pointing accuracy.

In processing a ScanSAR data, error in the radar pointing leads to a variation of the image

intensity in azimuth. To meet the radiometric accuracy requirement, it would require an azimuth

pointing angle much more accurate than that required for a strip mode SAR [6]. Therefore, estimation for

range and Doppler centroid is a more challenging problem to a ScanSAR system. Unfortunately, all

available clutterlock  algorithms [1, 2, 3] are not applicable or best suitable to a ScanSAR system since they

were devised for the strip mode system.

In this paper, a new range and Doppler centroid estimation algorithm is presented. This

algorithm is based on the idea of using the overlap regions between adjacent beams or adjacent bursts [7].

In particular, the range or Doppler centroid is obtained from the estimate of the range or Doppler value at

which the intensities of two adjacent images are crossing over each other. Since this algorithm is scene
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independent, it achieves the same accuracy for both the homogeneous and quasi-homogeneous targets,

without special treatment for the later [2].

For the RADARSAT ScanSAR,  this algorithm will lead to highly accurate radar pointing angles to

be able to meet the stringent radiometric requirement of the RADARSAT system. In addition, the Doppler

centroids obtained from two adjacent beams would be accurate enough for resolving the PRF ambiguity

based on the two different PRFs selected for the two beams. This may reduce the software development

effort of implementing other types of PRF ambiguity determination algorithm and enhance the successful

rate of resolving the PRF ambiguity for a ScanSAR processor system.

2. EFFECT OF POINTING ERROR ON SCANSAR IMAGE

Each ScanSAR burst processed by a traditional SPECAN  (or deran~p-FFT)  algorithm results in a

range-Doppler image. The intensity of this image is modulated by a two -dimensional antenna pattern

and the reciprocal of the cubic of the slant range . In order to derive the backscattering  coefficient of the

ground target, proper removal of the antenna pattern and the slant range variation is necessary. In this

process, error in the antenna pointing angles would skew the antenna pattern reference and cause a

intensity ramp modulation, as shown in Fig. 1, in the final burst image. Overlaying these intensity

distorted burst images, in the projection domain, would generate an image with an intensity variation in

both range (due to multiple beams) and azimuth dimensions.
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Figure 1. Effect of Pointing Error on Image Intesity

in RADARSAT ScanSAR system, the requirement of the relative radiometric error is 0.5 dB. A

common radiometric  error budget may also have an allocation to error contributed by the processor. This
.

includes error in modeling the antenna pattern and error in the amount of attitude drift within the

interval of pointing angle updates. This results in a very stringent requirement on the intensity variation

in both range and azimuth dimensions. Assuming that the allocation to the image intensity variation is
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only 0.25 dB, the required azimuth pointing accuracy would be - O.oo%”  (Or 25 Hz). This impose a more

Atringcnt  requirement on the azimuth pointing estimation than that of a strip mode SAR system.

To estimate the pointing angle, one can utilize the range-Doppler images before any radiometric

compensation is applied, This idea can be illustrated by Figure 2. Depicted in this Figure are the intensity

functions of two adjacent burst images (of the same beam or adjacent beams) with homogeneous targets;

XI and x2 are the projection coordinates (in either range or azimuth) of the center of antenna illumination

in images processed from two adjacent bursts; and xc is the coordinate at which the intensities of both

images are equaL Obviously, XI and x2 are determined by the radar pointing angle. Since the distances

of Xcxl and XCX2 are fixed, one can obtain the value of XI or the radar pointing angle by estimating the

value of xc. This idea leads to the optimal ratio algorithm described below.
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Figure 2. Intensity functions of two adjacent burst images

3. OPTIMAL RATIO ALGORITHM

Having a radiometric compensation for the slant range variation, the intensity of a range-Doppler

image in a ground projection can be expressed as a two-dimensional function of the positions x and y in

the following form:

I(X, y) = IV(X  – X(), y – yo)  “ CY(x, y) “ )(X, y) (1)

where IV(X – xo, y – yo ) is the antenna pattern centered at xo and y., CJ(X,  y) is the backscattering

coefficient of the scene, and Y(X, y) is the random process of the radar speckle with an exponential

distribution. Without loss of generosity, we will now consider a one-dimensional intensity function only.

For two adjacent bursts, the intensities of their range-Doppler images in ground projection can be

expressed as

ll(x)=Wl(x –xl), O(x) O~l(x) for xI-X/2<x<x~ +X/2

and 12( X)= W2(X– X2). CY(X). ~2(X)  for x2– X/2< x< x2+-X/2
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where X is the size of the image. Equation (2) is a general case which have two different antenna

patterns, one for each burst image. For Doppler centroid estimation, only one antenna pattern is required

because it is shared by both burst images. Since the backscattering  coefficient function O(x) is unknown

and not predictable, it is desirable to cancel this factor by taking the ratio of 11(x) and 12(x). Assuming

that xl < x2, this ratio is given by

w] (x – x] ) )f (x)
r(x) = .—–  for  X~–  X/2< X<x~+X/2

W2(X - X2) 72(X)
(3)

To detect the intensity cross-over point xc, one may suggest a matching technique to correlate

the intensity ratio function with the ratio of the antenna pattern in order to reduce the effect caused by the

speckle noise. There are two problems associated with this method. One is that the ratio of the two

random processes is extremely noisy. The mean and variance of its sample are not bounded. Second, the

ratio of the antenna pattern is quite unbalanced; one end toward a value much greater than one while the
other end being much smaller than one. Both problems prevent getting a reliable estimate of xc.

A simple solution to these problems is to take the logarithm of the intensity ratio first. This

changes the speckle noise from multiplicative to additive and also changes the ratio of the antenna

pattern from extremely unbalanced to well balanced. Denote the nature logarithm of the ratio by R(x),  it

has the following form:

R(x) = log(w] (x - x] )/w2(x - X2))  -1- log(y](x)/y~(x))
(4)

= A(x - Xc) +~(x)

where ~(x) denotes ]og( ~1 (x)/ 72(x)) . It can be shown that ~(x) is a much well behaved random

process with a mean of zero and a variance of 3.29. One may average this logarithm ratio function in the

y dimension to further reduce the noise. By doing so, the noise component ~(x) become Gaussian

distributed, Hence, one can apply the matching technique described in [8] to get a maximum likelihood
estimate of xc. The accuracy of this technique is equal to the Cramer Rae’s lower bound. Its processing

steps include: (1) to convolve R(x) with the first order derivative of A(x – xc), and (2) to detect the
zero-crossing point over the interval of (X2 – X / 2, Xl +-X  12).

4 CRAMER RAO’S LOWER BOUND

For any estimation problem, it is desirable to examine its performance by comparing its variance

with the Cramer Rae’s lower bound. In order to do so, we rewrite equation (4) in a discrete form as
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where & is the sampling spacing, ~1 and Ax2 are the distances between the intensity cross-over point

and each end of the overlap. We shall assume that the sampling rate is equal to the Nyquist rate. Consider

that R(i) is the result of average in the y dimension, therefore, it is Gaussian distributed with a mean

value of A(i o & – xc).  The variance of ~(i) is then equal to 3.29/Nz,  where Nl is the number of lines

taken for average. The joint probability density function can be formed as

/1$ ]

{

~Xp JR(i) - A(i. 6X - XC))2
p(R(l),  R(2),..., ~(k))  = ,g, &o—  .

202 }
(6)

where n~ is the number of samples in (xc – k], xc -t AX2 ). The Cramer-Rao inequality [9] states that

the variance of any (unbiased) position xc estimate is bounded by

Based upon equation (6) and (7), The lower bound of the variance of xc can be found to be

3.29 “ Ni] .6.
var{xc}  2 var{~(k)]” 6.0 ~

j 2  [A’(:-xC)]2dx  =  f~l [A’(x -  xc)]2dx
-Ax1

(8)

A more rigorous derivation of the Cramer-Rae’s lower bound can be obtained by forming the

joint probability density function of ~(i) that is not averaged in the y dimension. The result is very close

to that of (8). This derivation is given in Appendix A.

4.1 Cramer Rae’s Lower Bound for Doppler Centroid Estimate

Let Wa (f) be the azimuth antenna patlern as a function of the Doppler frequency ~, Af be the

interval of the Doppler frequency corresponding to the overlap of two burst images, and af be the

Doppler sample spacing. For a Doppler centroid estimate made from NI lines, its Cramer Rae’s lower

bound is given by

3.29” Ni] . 6f
var{ f~c } 2 —.

AfJ2 W:(f + A$ 12) W:(f – Af 12) 2dx
J(-Af12  Wa(f  +- Af 12) Wa(f  – Af 12) )

(9)

We can further express the standard deviation of the Doppler centroid estimate by
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Pm
W.f~c} = c1 (M) “ -=JN, . n.

where })RF  is the pulse repetition frequency, n~ = Af / ~f, and c1 (Af ) is a coefficient determined by

the integral in (9) and the value of Af. Table 1 lists the value of Cl (Af ) and its corresponding Af.

Table 1. ~ (Af)  and Af of the Optimal ratio Algorithm

\

Af/PRF .125 ,25 .375 .50 .625 .75 .875

\(Af,) .80 .33 ,244 .233 .259 .326 ,50

This Table indicates that at 50% overlap of the Doppler spectrum, this algorithm is most accurate.

Increasing or decreasing the amount of overlap reduces the accuracy. To be noted is that the coefficient

from optimal algorithm for a strip mode SAR is 0.2516 [2, 10]. One can see that some of the cases in Table

1 are even better. This does not imply that by estimating the Doppler centroid using all the SAR data

acquired over a target area would yield better accuracy than that of [2, 10] because in a ScanSAR there is

a lack of data between bursts. For a ScanSAR system with more than two azimuth looks, one can

optimally combine the Doppler centroid estimates obtained from all pairs of bursts within the interval of
a f u1l apcrt ure by using weights formed based upon their Cl (Af ) coefficients.

4.2 Cramer Rae’s Lower Bound for Range Centroid Estimate

A simple form of (8) can be obtained under two conditions: (1) one has the knowledge of the gain

difference of the two antenna functions, W] (X – x]) and W2 (x – x2 ), at the edge of overlap, and (2) the

function of A’(x – xc ) is approxitnately  a constant. For RADARSAT ScanSAR  system, both assumptions

are valid. Denote Agl and Ag2 as the absolute gain difference at each end of the overlap in dB unit, the

simplified form is given by

61.64 “ (Ag, 4- AgJ2 )-2 . 6X2 “ n$
var{xc} 2

N[
( lo)

This form is particularly useful for estimating the variance of the range centroid estimate since

one dots not have to deal with any of the many pairs of antenna patterns in a multiple beam ScanSAR.

The following example is given to illustrate the use of (10), An estimate of the range centroid is made

from 64 lines with 1024 samples in the overlap, The ground range sample spacing is 30 meter and the

absolute gain difference of the two antenna functions at each edge of overlap is 10 dB. By inserting these



numbers into (1 O), the standard deviation of the range  ccntroid estimate is found to be 47 meter. For a

SAR at 800 km altitude with 20° incidence angle, the corresponding elevation angle has a standard

deviation of 0.003°.

5. NOISE AND AMBIGUITY EFFECTS

Two problems are often encountered in range and Doppler centroid estimate. These are the

system noise and the ambiguities of both range and azimuth. The system noise is different from the

speckle noise and is primarily the combination of the thermal noise existed in front of the analog-to-

digital conversion circuit and the quantization noise after the analog-to-digital conversion. For a

homogeneous target, one can further optimize the centroid estimates by adding to the antenna pattern a

constant, derived from the signal-to-noise (SNR) estimate, to form the weighting function for searching

the intensity cross-over point. For a quasi-homogenous target with a good SNR (>1 O db), the centroid

estimation algorithm and its lower bound given in the previous sections are both applicable and accurate.

For a relatively poor SNR, the performance of this algorithm will be degraded.

The range and azimuth ambiguities are the ghost images caused by the antenna sidelobes. In a

SAR system design, the ambiguity level is usually low enough to show any visible ambiguities from

neighboring scenes of comparable intensity. However, for neighboring scenes with a much higher

intensity, its ambiguity significantly degrades the centroid estimate. The algorithm to suppress the

ambiguities given in [11] can be modified and used for a ScanSAR processor in order to achieve higher

image quality as well as more accurate centroid estimate.

6. DISCUSSION

The Doppler centroid estimation algorithm described here can also be appliecl to a strip mode

SAIL It has two advantages: (1) this algorithm is more efficient in computation and (2) it does not suffer

performance degradation from a quasi-homogeneous target. The computation efficiency is due to the

facts that in forming a range-Doppler image, it involves less computation per output pixel than a strip

mode correlation process. In addition, since a very high Doppler centroid accuracy is usually not

required, a conventional strip mode SAR Doppler centroid estimator has its trade-off between the amount

of computation and the range processing bandwidth. In this ScanSAR type Doppler centroid estimation

process, the trade-off for the amount of computation is simply the number of pulses in a burst, This trade-

off is also more effective than that of the strip mode.
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To implement this centroid estimation algorithm in a ScanSAR processor, it is relatively

complicated to convert the range-Doppler image into the projection domain and convert them back to the

range-Doppler domain after the averaged logarithm rat io function is formed. To solve this problem, one

can substitute the projection coordinate by the range-Doppler coordinate of the first burst. Then, for each

target one need to relate the range-Doppler pair of the second burst to that of the first one by

(11)

fd2  = fdl +“ f, “ tp

where r], fd] and rz, fdz are the range Doppler of the two bursts, f ~ is the Doppler frequency rate,

and tp is the time difference between the second burst and the first burst. This coordinate will greatly

simplify the estimation process.

7. SUMMARY

An accurate and efficient range and Doppler centroid estimation algorithm is presented in this

paper. The accuracy of this estimator is equal to the Cramer Rae’s lower bound. This algorithm provides

the same high accuracy for both the homogeneous target and the quasi-homogeneous target. Estimation

process can be further simplified by choosing proper coordinate. This algorithm will be very useful for

the RADARSAT ScanSAR and for all future ScanSAR systems. This algorithm is also a very good

candidate for Doppler centroid estimation of a strip mode SAR.
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APPENDIX A

#a .

,

Now consider that l?(i) is not averaged in the y dimension and the random variables
~(i), i= 1,2, . . . . n$, are not Gaussian distributed. Because the mean of ~(~) is zero, the pdf of h?(i) can

be written as ~(R(i) – A(i. & – XC)).  Since h?(l), R(2),..., and R(n$ ) are independent of each other,

their joint pdf can be formed as

p(zi’(l), R(2),...,, Wn$)) = fi~(~(i) - A(i” 6X - xc)) (al)
i=]

The first order derivative of the maximum likelihood function of the joint pdf by xc can be obtained as

dlnp(l?;xc) = ~ f’(l?(i)  - A(i. 6X – Xc))” A(i)
(3Xc i=] f(ll(i) - A(i o 6X - Xc))

(a2)

The second differentiation is given by

d2 In p(l?;xc)  =

[

~ <’2(~(i))”  A’2(i) + -f”(R(i)). A’2(i) - f’(ll(i)).  A“(i)
dx: )

(a3)
i=] f (R(i)) f(R(i))

Since the distribution function of ~(i) is a well behaved one, its value and the derivative of its

self are both zero at infinity, therefore, the integral of both f’(R(i))  and f“(R(i))  are zero. The

expectation of (a3) is then given by

(a4)

Using the Cramer Rae’s

bound is found to be

inequality and substitute the summation of A’2 (i) by an integral, the lower

[~ ) (Jm f’2(R(i)]  ~R(i) ‘1

)

m f’2(R(i)) ~R(i) ‘1, ax.——
—00 f(R(i)) -00 f(R(i))

var{xc}  > ‘ —  Aq
~[A’(i.  6X - XC)]2 hA’(x – XC)]2  dx
i=l J-AX]

(a5)

By Monte Carlo simulation, (~~~ f‘2 (R(i)) f‘1 (R(i))dR(i))–l  is found to be very close to the

variance of f (R(i)). In addition, it can be proven that (~~m f ‘2( R(i))f’1 (R(i) )dR(i))-l  is exactly

equal to the variance of f (R(i)) if f (R(i)) is Gaussian distributed.
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